USN

First Semester M.Tech. Degree Examination, February 2013 **Applied Mathematics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

Write a note on types of errors involved in numerical calculation.

(06 Marks)

Find the binary form of the number 193.

(04 Marks)

- Test for consistency and solve 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16 by Gauss-Jordan method.
- Find the LU decomposition of the matrix [A] = $\begin{bmatrix} 2 & -1 & 1 \\ 4 & 3 & -1 \\ 3 & 2 & 2 \end{bmatrix}$ using Cront's method.

- Find the solution of the system of equations by Cramer's rule. 5x 7y + z = 11, 6x - 8y - z = 15, 3x + 2y - 6z = 7. (06 Marks)
- Decompose the matrix $A = \begin{bmatrix} 4 & -1 & 1 \\ -1 & 6 & 4 \\ 1 & -4 & 5 \end{bmatrix}$ using the relation $A = [U]^T[U]$. (06 Marks)
- Using Jacobi method, find all the eigen values and corresponding eigen vectors of the matrix 3

A =
$$\begin{bmatrix} 1 & \sqrt{2} & 2 \\ \sqrt{2} & 3 & \sqrt{2} \\ 2 & \sqrt{2} & 1 \end{bmatrix}$$
 (10 Marks)

Define a sturm sequence. Solve by 'power' method and obtain largest eigen value of the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and initial value $[X_0] = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and obtain the remaining eigen values.

Given that a.

x	0.2	0.4	0.6	0.8	
f(x)	0.0016	0.0256	0.1296	0.4096	

Find f'(x), f''(x) and f'''(x) at x = 0.3.

(12 Marks)

- b. Evaluate $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$ and $\frac{\partial^2 f}{\partial x \partial y}$ for the function, $f(x, y) = 2x^4y^3$ at x = 1, y = 1 with (08 Marks) a step size as $\Delta x = \Delta y = 0.1$.
- Determine the value of the integral $\int_{1}^{2} \frac{dx}{1+x}$ using combined Trapezoidal and Romberg 5 integration rule, upto an accuracy of 4 decimal places. (10 Marks) 1 of 2

5 b. A rocket is launched from the ground, it's acceleration 'a' is noted during first 1 minute and is given in the following table. Find the velocity of the rocket at first minute by using Simpson's 3/8th rule.

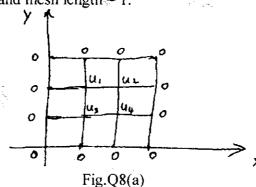
Time (in secs)	0	10	20	30	40	50	60
Accn (cms/sec ²)	30	31.63	33.54	35.57	37.75	40.33	43.25

(10 Marks)

- 6 a. Find the solution of the initial value problem $2\frac{dy}{dx} = 4x + 2y$, y(1) = 3 for x = 1 (0.1) 1.2 using Runge-Kutta 2nd order and 4th order methods. (10 Marks)
 - b. Solve the given differential equation $\frac{dy}{dx} = 1 + \frac{y}{x}$ given y = 2 at x = 1 by taking step size h = 0.2 and determine y at x = 1.4 by using modified Euler method. Perform 2 iterations at each step.
- 7 a. Given y' = y + 2x 1 and

x	0	0.1	0.2	0.3
у	1	1.01034	1.04280	1.09971

Determine y(0.4) using Adam's predictor and corrector formulae correct upto 5th decimal place of accuracy. (10 Marks)


b. Explain the Shooting methods.

(10 Marks)

8 a. Solve $\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = +10(\mathbf{x}^2 + \mathbf{y}^2 + 10)$ over the square with $\mathbf{x} = 0 = \mathbf{y}$; $\mathbf{x} = 3 = \mathbf{y}$; with $\mathbf{u} = 0$

on the boundary and mesh length = 1.

(10 Marks)

b. Find the values of u(x, t) satisfying the parabolic equation $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ with boundary conditions u(0, t) = 0 = u(5, t) and u(x, 0) = $4x - \frac{1}{2}x^2$ at the points x = i; i = 0, 1, 2, 3, 4 and

 $t = \frac{1}{5}j$; j = 0, 1, 2.

(10 Marks)

* * * * *